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We demonstrate why for a sheared gas of hard spheres, described by the SLLOD equations with an isoki-
netic Gaussian thermostat in between collisions, deviations of the conjugate pairing rule for the Lyapunov
spectrum are to be expected, employing a previous result that for a large number of phirtiblessokinetic
Gaussian thermostat is equivalent to a constant friction thermostat, ugNofliictuations. We also show that
these deviations are at most of the order of the fourth power in the shear rate.
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The SLLOD equations of motion, combined with Lees- chosen such that the total peculiar kinetic energy of the sys-
Edwards boundary conditidri], were originally proposed in tem,EipiZ/Z, is a constant of motion in between collisions. In
Refs.[2,3], and since then they have been convenient tools teerms of the positions; and the laboratory momenta of
calculate the shear viscosity of gases in the bulk by means ahe particles, Eq(1) reads
nonequilibrium molecular dynamics simulations for many ) . R
years. These studies consider systems with a large number of ri=v,, Vi=F+tayyXx—ay,. 2
mutually interacting particles that are driven by an external )
shear ratey [4—6]. In these studies, the isokinetic Gaussian ' the present context, the gas particles are hard spheres,

which for simplicity are assumed to have unit radius. The

thermostat is an artificial way to continuously remove the . ) ; .
energy generated inside the system due to the work done dlynamics of the gas particles consists of an alternating se-
it by the external shear field, such that a nonequilibriumq,uence of flight segments and instantanebirsary colli-

steady state, homogeneous in space, can be reached. THENS: During a flight, the dynamics of the gas particles is
Lyapunov spectrum of such systems is of interest since it hadeScribed by Eqs2) with Fi=0. At an instantaneous colli-
been shown that the shear viscosity can be related to thiOn Petween theth and thejth sphere, the postcollisional
spectruni5,6], which can be numerically obtained as a func- POSitions and laboratory momenta (subscripts are related
tion of the shear ratf7]. The analysis of the simulation data 0 their precollisional values— subscripts by

[5] indicated that the sum of the largest and the smallest, the

r'A = r._ y r' = r._ ,
sum of the second largest and the second smallest and so on, e e
were the same. The_ phenomenon of sych pairing of the Vi+:Vi—_{(Vi—_Vj—)'ﬁij}ﬁijv and
Lyapunov exponents is known as the conjugate pairing rule,
or the CPR. Based on this observation, an attempt to prove Vj+:Vj7+{(Vif_ij)'ﬁij}ﬁij , @)

an exact CPR was made for arbitrary interparticle potentials
and arbitraryy [8,9], and later studies and better simulation while the positions and the velocities of the rest of the

techniques[10,11 indicated that for systems obeying the spheres remain unchanged. Hetg,is the unit vector along
SLLOD equations of motio_n_, the CPR is not satisfied exactlyine [ine joining the center of thigh sphere to thgth sphere
under these general conditiofis2]. However, any conclu- gt the instant of collision. Note that because we applied the
sive theoreticalproof regarding the status of an app.roxi.mateisokmetiC Gaussian thermostat only between collisidr],
CPR for systems under SLLOD equations of motion is abtne peculiar kinetic energy changes in individual collisions.
sent in the literature till now, leaving the problem open for aThese changes are random, both in magnitude and sign, due
long time. ) ) ) _ to the randomness of the collision parameters, and hence it is
The SLLOD equations of motion describe the dynamicsyyite likely that the system would reach a steady state, where
of a collection ofN particles constituting a fluid with a mac- he average change of peculiar kinetic energy would be zero.

roscopic velocity fieldi(r) = yyx. For particles of unit mass, In terms of the B8l-dimensional vectors R
the equations of motion of thgh particle, in terms of its =(ry,fa, o fN)s V=(V1 Vo, o V), andNij . whoselth
positionr; and peculiar momentump;, is given by entry is given byN!,-=(5| R j)ﬁ” 12 (1=12,...N),

) o R Egs.(2) and(3) can be compacted to
=pityyix, pi=Fi—ypiyXx—ap;, 1) . .
R=V, V=ayCR-aV 4
whereF; is the force on thdth particle due to the other qyring a flight segment and

particles in the system. The value af the coefficient of

friction representing the isokinetic Gaussian thermostat, is Ri=R_, V+=V_—2(V_-Nij)Nij,
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at a collision between thith and thejth sphere[14]. Here, H(7) can be decomposed intd\3< 3N submatrices as
C is a ANX 3N matrix with NX N entries, each of which is a

3% 3 matrix. In terms of the entry index ,fn), in thexyz B hitl(7)  hl(7)
basis,C;,=cd, (I,m=1,2,...N) and H(7)= hi3l(7) hl4(r)| 8
010 Having further decomposed each of th¥l(r) matrices k
c=xy=|0 0 o =1,...,4)into NXN entries of 3<3 matrices a#f}J(7) (I

and m are counted along the row and the column, respec-
tively), we have(with | as the identity matrix

Having described the dynamics of the infinitesimal devia-
tion 6X=(6R,8V) between two typical trajectories in the hitl(r)=
6N-dimensional phase space for a titas

0 0 O

Y -
I+ y7— —(1—e @07
T ao( e o)

C} 5|m,

1 178" Y —agr
hir (1)= o |+;[a07(1+e )—2
0

OX(t)=L(t)6X(0), (5

the Lyapunov exponents for this system are the logarithms of
the eigenvalues of the matriX, defined by

A=lim[L(t)]¥eY,

t—oo

+2e” “Of]c] Oim »

r hi3l(r)={y[1-e “]c}8,, and
whereL(t)=[L(t)]"L(t).

It can be showri15] that thesufficient conditiorfor the (4] Cn 1 e
CPR to hold exactly for a dynamical system obeying &9. him (7) =€) ~“I—y| 7+ a—o(l—e o) [C{ Sim- (9
is the existence of eonstant nonsingulamatrix K satisfying
K?exl, such that If we now form a 6N 6N matrix G [in the notation of Eq.
(8)], which looks like G[H=G[)=0 and G[Z}=G[
[L)]TKL(t) = uK. ® g5 where o o

Here,u is a scalar function of. If L(t) satisfies Eq(6), then
we callL(t) to be “generalizedu-symplectic.” It is easy to

show from Eq.(6) that if L is an eigenvalue of(t), then so 9=

is «2/L; from which the(exac) CPR follows. For the situa-
tions where the CPR has been proved to be eka¢{16—
18], only the u-symplecticity case of Eq(6) (i.e., K=,
whereJ is the usual symplectic matphas been exploited. [H(7)]"GH(7)=e "G, (11)

In this context, we note that despite the similarity between

the present problem and the one discussed in [Rdl, the  Thus,H(7) is generalizegk-symplectic withG, but it is not
elaborate formalism developed therein is not applicable herg,-symplectic, i.e.[H(7)]TJH(7) # e~ %0"J. The fact that the

A significant simplification can be achieved by noticing same analysi$Eqgs. (7)—(10)] can be carried out for any
that the coefficient of frictiona, in the nonequilibrium  constant coefficient of frictiorinot necessarilyry), implies
steady state, fluctuates with\I fluctuations around a fixed that the CPR is exact for@ollisionlessgas of point particles
value a in the thermodynamic limif19]. Thus, to calculate obeying Eq.(4) with a constant coefficient of friction. This
the Lyapunov exponents for large, to which we confine has been found previously in simulation dat4].
ourselves henceforthy can be replaced by, in Eq. (4), For the transformation 06X over a binary collision be-
except for a beginning transient time. On average, for smaliween theith and thejth sphere, we follow the explicit deri-
v, axy? and so isa,. Higher order corrections play a role vation in Ref.[14], which in turn is based on the formalism
for larger shear rates. developed simultaneously by Gaspard and Dorfr2m,

In the following analysis, we first explore the status of theand by Dellago and co-worke[22]. The postcollisional in-
CPR when the coefficient of friction is a constan§, and  finitesimal deviation vecto6X, can be related to its precol-
then return to the case where the coefficient of friction repdisional valuesX_ by
resents an isokinetic Gaussian thermostat. The detailed deri-
vation of the following results is given elsewhe5]. At X =M;joX_,
present, we focus only on the main points. i ]

Once a replacese in Eq. (4), we find that in the time where the B X 6N m_atrlx M;; can l:_)e decomposed into four
evolution of X over a collisionless flight segment betwaen 3N 3N blocks, having the following structure:
andt+ 7 is given by

o = O
o O -

0
0]. (10
1

ThenH(7) can be easily shown to satisfg0]

. [r o
SX(t+7)=H(7) 8X(1). (7) M”:('_ZN”N”)[R J'
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Here,R is a symmetric matrix. The above expression¥or rithms of the eigenvalues dfy(t)=[Lo(t)]"Ly(t) pair ex-
implies that the collisions are symplectic, i.e., actly. This implies that if we arrange the corresponding

Lyapunov spectrum
but not generalized symplectic witd (M/GM;; #G). Ao=lim[Lo(t)]¥,
We can now express the mattixt) in terms of theH and e
M matrices in the following way: if the dynamics involves . ) ) )=y (0)—
free-flight segments separated dinstantaneous binary col- " t(k:)s: decre?g,)mg (8)rder of magnitude a§’=\{"=- .-
lisions atty,t,, . . . ts such that 6<t;<t,<- - <tc<t, then =MNen, thENNVH+ ey i 1=~ ao.
It is a simple exercise to show thai(At)—Hg(At)

L) =H(Aty)M;; H(Ats_1)---M; j H(Aty). (120 =0(5?), from which we conclude that fakt=7=0O(ro),

Here,Ats=t—tg andAt;=t;,,—t; fori=1,...,6—1). L(r)=Lo(n[1+73B], (14)

The consequences of Eq%)—(12) can be summarized by
the following: for a collection of hard spheres obeying the . , ~
SLLOD equations of motion with constant coefficient of Where the matr8 is of the order of one in boty andN.
friction ay, (a) the H matrices are generalizgd-symplectic ~ Note thatB contains higher powers of as well. Because it
with G, but not withJ, and(b) the M matrices are symplectic involves the matrixc and contributions from collisions be-
but not generalizeg.-symplectic withG. Hence, once thel ~ tween spheresB is not proportional tol, and hence, we
and theM matrices are combined together, as in Etp), cannot regard it simply as a scalar factor which case the
L(t) is seen to be generalizeg-symplectic with neithelG ~ €xact conjugate pairing would be easy to obtain again
nor J. This is consistent with the claim thaft) is not gen-  Equation(14) implies that forAL(7)=L(7)—Ly(7),
eralized u-symplectic(and consequently, the CPR does not

hold exactly for a collection of hard spheres obeying the AL(7) =9 BTLy(7) +Lo(7)B]+¥*BTLo(7)B. (15
SLLOD equations of motion with constant coefficient of
friction aq. From Egs.(14) and(15), we can now see that the differences

The degree of deviation from an exact CPR must f_o"owbetvveenL(r) and Lo(7), and betweeri(7) and [o(7) are
from the properties of(t), and to estimate this deviation, . ~a .
small, by a relative ordey®. Therefore the logarithm of the

we can use eitheK=G, or K=J in Eq. (6). While the . .
former choice implies that one has to try to estimate thef'denvalues ot(7) andLo(7) also differ by a term of order

deviation from an exact CPR from the distribution of the unit¥® in an absolute sense. If we now divide the logarithms of
vectorsN;;’s and the collision angles for different sets of these eigenvalues by the time we see that the finite-time

binary collisions in the expression M;’s, the latter choice (for time 7) Lyapunov exponents, calculated frdry(7) and
means that one can make the estimate by using the typicdlom L(7) [which we denote aafo)(r) and \(7), respec-
magnitude of a free-flight time, i.e., the mean free time  tively, for i=1,2,... 8], differ by a term O(3%/7)

We choose the latter approach, because an estimate of th:eo(ﬁ/ 2)

deviation from the exact CPR can be made at smalis a We make one further observation at this stage. The

POWEr SEres expansian 7. Itis important to realize at this Lyapunov exponent&ven the finite time ongsre invariant
point that as the density sets a time scale in the form of the

mean flight timery between collisions, the actual dimension- undery——, SO In a power Series expansifs] in v, the

| I t ding to the sh ~ . odd powers vanish. Hence, we conclude that the logarithm of
ess small parameter corresponding to the shear rate Is . eigenvalues df(7) andLy(7) must differ by a term of
=7Y7o-

We begin by constructing another mattig(At) by set- the order ofy?, i.e., the conjugate pj\iring of,(7)'s must be
ting y=0 but a0 in the explicit form ofH(At) in Eqs.  Valid up to corrections of the fornyy®.

(7)—(9), i.e., To explicitly extend this formalism to largeand thereby
obtain a relation between;s and\(%s, we need to sequen-
Ho(At) =H(AD)| 4 20,5=0- tially concatenate a lot of(7)’s. In general, these matrices
neither commute with each other, nor with tBés, which
It is easy to show thatly(At) satisfies the equation, prevents us from explicitly demonstrating how the deviation

[L(t)—Lg(t)] is built up. However, we can argue in the fol-
lowing manneri_(t) andi,(t) are positive definite and sym-
Following Eq.(12), we then form the matrixy(t) as metric. This allows us to express them in the foip(t)
=exp@y) and L(t)=exp(@), where for larget, both the ei-
genvalues oA and A must behave-t. From this perspec-
such thatall the M;; matrices in Eqs(12) and (13) are the tive, the difference between the Lyapunov exponents foy

same. Since both thil;; and theHy(At) matrices are now ?ndl:o(t) is related to A—Ay). Since the difference between
w-symplectic withd, so isLy(t). As a consequence, the loga- L(t) and Ly(t) has an explicit prefactor o§®, so doesA

[Ho(At)]TIHo(At) =€~ *0A1],

Lo(t) = Ho( At M j Ho(Ats_1) -+ -M; ; Ho(Ato), (13
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—A,. Using the symmetry argument that the Lyapunov ex-thermostat in the thermodynamic limit9], and hence one
ponents have to be even functionsyfwe obtain expects that with an isokinetic Gaussian thermostat between
collisions, the Lyapunov exponent spectrum also exhibits
O(v7?®) deviations from the CPR, in the thermodynamic
limit. Finally, given that the source of the CPR violation is

) basically theayyCR term in Eqg.(4), one can argue that
For the largest and the most negative Lyapunov exponents, \ffhen the gas particles interact with each other by means of a
has been possible to show that they pairta, plus correc-  short-ranged, repulsive potential with a constant multiplier
tions of O(yy®) by means of a kinetic theory approach thermostat, the violation of the CPR would also be at least of
[24,25, based on the independence of subsequent collision®(7*) (for gas particles interacting with each other by
of a sphere. Likewise, one expects that in subsequent timemeans of a short-ranged, repulsive potential with an isoki-
intervals of O( ), the L(7) matrices are not qualitatively netic Gaussian thermostat, the same results are expected
much different from each other. Therefore, we expect that thg15].

Ni+hgnis1=—ap+O(yy®), i=1,...,6N. (16)

coefficient of theO(y°) term in Eq.(16), to be of the same ¢ is a pleasure to thank Professor J. R. Dorfman and
order as that for a flight time=O(ro) [i.e., of the order of  professor H. van Beijeren for many useful and motivating
B=0(1)], and therefore Eq.16) to hold. discussions regarding this subject. D.P. was supported by re-
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CPR up toO(y»%) when that time is of the order of the 9600428. R.v.Z. was supported by the research grant of Pro-
mean flight time, and this is expected to hold for the infinite-fessor H. van Beijeren, by FOM, SMC, and NWO Priority
time Lyapunov exponents too. Moreover, the isokineticProgram Non-Linear Systems, and by a grant from the Natu-
Gaussian thermostat is equivalent to the constant multiplieral Sciences and Engineering Research Council of Canada.
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