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Lyapunov exponent pairing for a thermostatted hard-sphere gas under shear
in the thermodynamic limit
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We demonstrate why for a sheared gas of hard spheres, described by the SLLOD equations with an isoki-
netic Gaussian thermostat in between collisions, deviations of the conjugate pairing rule for the Lyapunov
spectrum are to be expected, employing a previous result that for a large number of particlesN, the isokinetic
Gaussian thermostat is equivalent to a constant friction thermostat, up to 1/AN fluctuations. We also show that
these deviations are at most of the order of the fourth power in the shear rate.
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The SLLOD equations of motion, combined with Lee
Edwards boundary condition@1#, were originally proposed in
Refs.@2,3#, and since then they have been convenient tool
calculate the shear viscosity of gases in the bulk by mean
nonequilibrium molecular dynamics simulations for ma
years. These studies consider systems with a large numb
mutually interacting particles that are driven by an exter
shear rateg @4–6#. In these studies, the isokinetic Gaussi
thermostat is an artificial way to continuously remove t
energy generated inside the system due to the work don
it by the external shear field, such that a nonequilibriu
steady state, homogeneous in space, can be reached
Lyapunov spectrum of such systems is of interest since it
been shown that the shear viscosity can be related to
spectrum@5,6#, which can be numerically obtained as a fun
tion of the shear rate@7#. The analysis of the simulation dat
@5# indicated that the sum of the largest and the smallest,
sum of the second largest and the second smallest and s
were the same. The phenomenon of such pairing of
Lyapunov exponents is known as the conjugate pairing r
or the CPR. Based on this observation, an attempt to pr
an exact CPR was made for arbitrary interparticle potent
and arbitraryg @8,9#, and later studies and better simulatio
techniques@10,11# indicated that for systems obeying th
SLLOD equations of motion, the CPR is not satisfied exac
under these general conditions@12#. However, any conclu-
sive theoreticalproof regarding the status of an approxima
CPR for systems under SLLOD equations of motion is
sent in the literature till now, leaving the problem open fo
long time.

The SLLOD equations of motion describe the dynam
of a collection ofN particles constituting a fluid with a mac
roscopic velocity fieldu(r )5gyx̂. For particles of unit mass
the equations of motion of thei th particle, in terms of its
position r i and peculiar momentumpi , is given by

ṙ i5pi1gyi x̂, ṗi5Fi2gpiyx̂2api , ~1!

where Fi is the force on thei th particle due to the othe
particles in the system. The value ofa, the coefficient of
friction representing the isokinetic Gaussian thermostat
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chosen such that the total peculiar kinetic energy of the s
tem,( i pi

2/2, is a constant of motion in between collisions.
terms of the positionsr i and the laboratory momentavi of
the particles, Eq.~1! reads

ṙ i5vi , v̇i5Fi1agyi x̂2avi . ~2!

In the present context, the gas particles are hard sphe
which for simplicity are assumed to have unit radius. T
dynamics of the gas particles consists of an alternating
quence of flight segments and instantaneousbinary colli-
sions. During a flight, the dynamics of the gas particles
described by Eqs.~2! with Fi50. At an instantaneous colli
sion between thei th and thej th sphere, the postcollisiona
positions and laboratory momenta (1 subscripts! are related
to their precollisional values (2 subscripts! by

r i 15r i 2 , r j 15r j 2 ,

vi 15vi 22$~vi 22vj 2!•n̂i j %n̂i j , and

vj 15vj 21$~vi 22vj 2!•n̂i j %n̂i j , ~3!

while the positions and the velocities of the rest of t
spheres remain unchanged. Here,n̂i j is the unit vector along
the line joining the center of thei th sphere to thej th sphere
at the instant of collision. Note that because we applied
isokinetic Gaussian thermostat only between collisions@13#,
the peculiar kinetic energy changes in individual collision
These changes are random, both in magnitude and sign,
to the randomness of the collision parameters, and hence
quite likely that the system would reach a steady state, wh
the average change of peculiar kinetic energy would be z

In terms of the 3N-dimensional vectors R
5(r1 ,r2 , . . . ,rN), V5(v1 ,v2 , . . . ,vN), andN̂i j , whosel th
entry is given byN̂i j

l 5(d l ,i2d l , j )n̂i j /A2 (l 51,2, . . . ,N),
Eqs.~2! and ~3! can be compacted to

Ṙ5V, V̇5agCR2aV ~4!

during a flight segment and

R15R2 , V15V222~V2•N̂i j !N̂i j ,
©2002 The American Physical Society02-1
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at a collision between thei th and thej th sphere@14#. Here,
C is a 3N33N matrix with N3N entries, each of which is a
333 matrix. In terms of the entry index (l ,m), in the xyz
basis,Clm5cd lm ( l ,m51,2, . . . ,N) and

c5 x̂ŷ5F 0 1 0

0 0 0

0 0 0
G .

Having described the dynamics of the infinitesimal dev
tion dX5(dR,dV) between two typical trajectories in th
6N-dimensional phase space for a timet as

dX~ t !5L~ t !dX~0!, ~5!

the Lyapunov exponents for this system are the logarithm
the eigenvalues of the matrixL, defined by

L5 lim
t→`

@ L̃~ t !#1/(2 t),

whereL̃(t)5@L(t)#TL(t).
It can be shown@15# that thesufficient conditionfor the

CPR to hold exactly for a dynamical system obeying Eq.~5!
is the existence of aconstant nonsingularmatrix K satisfying
K2}I, such that

@L~ t !#TKL~ t !5mK. ~6!

Here,m is a scalar function oft. If L(t) satisfies Eq.~6!, then
we call L(t) to be ‘‘generalizedm-symplectic.’’ It is easy to
show from Eq.~6! that if L̃ is an eigenvalue ofL̃(t), then so
is m2/L̃; from which the~exact! CPR follows. For the situa-
tions where the CPR has been proved to be exact@14,16–
18#, only the m-symplecticity case of Eq.~6! ~i.e., K5J,
whereJ is the usual symplectic matrix! has been exploited
In this context, we note that despite the similarity betwe
the present problem and the one discussed in Ref.@14#, the
elaborate formalism developed therein is not applicable h

A significant simplification can be achieved by noticin
that the coefficient of frictiona, in the nonequilibrium
steady state, fluctuates with 1/AN fluctuations around a fixed
valuea0 in the thermodynamic limit@19#. Thus, to calculate
the Lyapunov exponents for largeN, to which we confine
ourselves henceforth,a can be replaced bya0 in Eq. ~4!,
except for a beginning transient time. On average, for sm
g, a}g2 and so isa0. Higher order corrections play a rol
for larger shear rates.

In the following analysis, we first explore the status of t
CPR when the coefficient of friction is a constanta0, and
then return to the case where the coefficient of friction r
resents an isokinetic Gaussian thermostat. The detailed
vation of the following results is given elsewhere@15#. At
present, we focus only on the main points.

Oncea0 replacesa in Eq. ~4!, we find that in the time
evolution ofdX over a collisionless flight segment betweet
and t1t is given by

dX~ t1t!5H~t!dX~ t !. ~7!
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H(t) can be decomposed into 3N33N submatrices as

H~t!5Fh[1]~t! h[2]~t!

h[3]~t! h[4]~t!
G . ~8!

Having further decomposed each of theh[k] (t) matrices (k
51, . . . ,4) into N3N entries of 333 matrices ashlm

[k] (t) ( l
and m are counted along the row and the column, resp
tively!, we have~with I as the identity matrix!

hlm
[1]~t!5H I1Fgt2

g

a0
~12e2a0t!GcJ d lm ,

hlm
[2]~t!5H 12e2a0t

a0
I1

g

a0
2 @a0t~11e2a0t!22

12e2a0t#cJ d lm ,

hlm
[3]~t!5$g@12e2a0t#c%d lm , and

hlm
[4]~t!5eH 2a0tI2gFt1

1

a0
~12ea0t!GcJ d lm . ~9!

If we now form a 6N36N matrix G @in the notation of Eq.
~8!#, which looks like Glm

[1]5Glm
[4]5O” and Glm

[2]5Glm
[3]

5gd lm , where

g5F 0 1 0

1 0 0

0 0 1
G . ~10!

ThenH(t) can be easily shown to satisfy@20#

@H~t!#TGH~t!5e2a0tG. ~11!

Thus,H(t) is generalizedm-symplectic withG, but it is not
m-symplectic, i.e.,@H(t)#TJH(t)Þe2a0tJ. The fact that the
same analysis@Eqs. ~7!–~10!# can be carried out for any
constant coefficient of friction~not necessarilya0), implies
that the CPR is exact for acollisionlessgas of point particles
obeying Eq.~4! with a constant coefficient of friction. This
has been found previously in simulation data@11#.

For the transformation ofdX over a binary collision be-
tween thei th and thej th sphere, we follow the explicit deri
vation in Ref.@14#, which in turn is based on the formalism
developed simultaneously by Gaspard and Dorfman@21#,
and by Dellago and co-workers@22#. The postcollisional in-
finitesimal deviation vectordX1 can be related to its precol
lisional valuedX2 by

dX15Mi j dX2 ,

where the 6N36N matrix Mi j can be decomposed into fou
3N33N blocks, having the following structure:

Mi j 5~ I22N̂i j N̂i j !F I 0

R I G .

2-2
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Here,R is a symmetric matrix. The above expression forM
implies that the collisions are symplectic, i.e.,

Mi j
T JMi j 5J,

but not generalized symplectic withG (Mi j
T GMi j ÞG).

We can now express the matrixL(t) in terms of theH and
M matrices in the following way: if the dynamics involve
free-flight segments separated bys instantaneous binary col
lisions att1 ,t2 , . . . ,ts such that 0,t1,t2,•••,ts,t, then

L~ t !5H~Dts!Mi sj s
H~Dts21!•••Mi 1 j 1

H~Dt0!. ~12!

Here,Dts5t2ts andDt i5t i 112t i for i 51, . . . ,(s21).
The consequences of Eqs.~7!–~12! can be summarized b

the following: for a collection of hard spheres obeying t
SLLOD equations of motion with constant coefficient
friction a0, ~a! the H matrices are generalizedm-symplectic
with G, but not withJ, and~b! theM matrices are symplectic
but not generalizedm-symplectic withG. Hence, once theH
and theM matrices are combined together, as in Eq.~12!,
L(t) is seen to be generalizedm-symplectic with neitherG
nor J. This is consistent with the claim thatL(t) is not gen-
eralizedm-symplectic~and consequently, the CPR does n
hold exactly! for a collection of hard spheres obeying th
SLLOD equations of motion with constant coefficient
friction a0.

The degree of deviation from an exact CPR must foll
from the properties ofL(t), and to estimate this deviation
we can use eitherK5G, or K5J in Eq. ~6!. While the
former choice implies that one has to try to estimate
deviation from an exact CPR from the distribution of the u
vectors N̂i j ’s and the collision angles for different sets
binary collisions in the expression ofMi j ’s, the latter choice
means that one can make the estimate by using the typ
magnitude of a free-flight time, i.e., the mean free timet0.
We choose the latter approach, because an estimate o
deviation from the exact CPR can be made at smallg, as a
power series expansionin g. It is important to realize at this
point that as the density sets a time scale in the form of
mean flight timet0 between collisions, the actual dimensio
less small parameter corresponding to the shear rateg̃
5gt0.

We begin by constructing another matrixH0(Dt) by set-
ting g50 but a0Þ0 in the explicit form ofH(Dt) in Eqs.
~7!–~9!, i.e.,

H0~Dt !5H~Dt !ua0Þ0,g50 .

It is easy to show thatH0(Dt) satisfies the equation,

@H0~Dt !#TJH0~Dt !5e2a0DtJ.

Following Eq.~12!, we then form the matrixL0(t) as

L0~ t !5H0~Dts!Mi sj s
H0~Dts21!•••Mi 1 j 1

H0~Dt0!, ~13!

such thatall the Mi j matrices in Eqs.~12! and ~13! are the
same. Since both theMi j and theH0(Dt) matrices are now
m-symplectic withJ, so isL0(t). As a consequence, the log
06010
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rithms of the eigenvalues ofL̃0(t)5@L0(t)#TL0(t) pair ex-
actly. This implies that if we arrange the correspondi
Lyapunov spectrum

L05 lim
t→`

@ L̃0~ t !#1/(2t),

in the decreasing order of magnitude asl1
(0)>l2

(0)>•••

>l6N
(0) , thenl i

(0)1l6N2 i 11
(0) 52a0.

It is a simple exercise to show thatH(Dt)2H0(Dt)
5O(g̃3), from which we conclude that forDt5t5O(t0),

L~t!5L0~t!@ I1g̃3B#, ~14!

where the matrixB is of the order of one in bothg̃ andN.
Note thatB contains higher powers ofg̃ as well. Because it
involves the matrixc and contributions from collisions be
tween spheres,B is not proportional toI, and hence, we
cannot regard it simply as a scalar factor~in which case the
exact conjugate pairing would be easy to obtain aga!.
Equation~14! implies that forDL̃(t)[L̃(t)2L̃0(t),

DL̃~t!5g̃3@BTL̃0~t!1L̃0~t!B#1g̃6BTL̃0~t!B. ~15!

From Eqs.~14! and~15!, we can now see that the difference
betweenL(t) and L0(t), and betweenL̃(t) and L̃0(t) are
small, by a relative orderg̃3. Therefore the logarithm of the
eigenvalues ofL(t) andL0(t) also differ by a term of order
g̃3 in an absolute sense. If we now divide the logarithms
these eigenvalues by the timet, we see that the finite-time
~for time t) Lyapunov exponents, calculated fromL̃0(t) and
from L̃(t) @which we denote asl i

(0)(t) and l i(t), respec-

tively, for i 51,2, . . . ,6N#, differ by a term O(g̃3/t)
5O(gg̃2).

We make one further observation at this stage. T
Lyapunov exponents~even the finite time ones! are invariant
underg→2g, so in a power series expansion@23# in g̃, the
odd powers vanish. Hence, we conclude that the logarithm
the eigenvalues ofL(t) andL0(t) must differ by a term of
the order ofg̃4, i.e., the conjugate pairing ofl i(t)’s must be
valid up to corrections of the formgg̃3.

To explicitly extend this formalism to larget and thereby
obtain a relation betweenl is andl i

(0)s, we need to sequen
tially concatenate a lot ofL(t)’s. In general, these matrice
neither commute with each other, nor with theB’s, which
prevents us from explicitly demonstrating how the deviati
@L(t)2L0(t)# is built up. However, we can argue in the fo
lowing manner:L̃(t) andL̃0(t) are positive definite and sym
metric. This allows us to express them in the formL̃0(t)
5exp(A0) and L̃(t)5exp(A), where for larget, both the ei-
genvalues ofA0 andA must behave;t. From this perspec-
tive, the difference between the Lyapunov exponents forL̃(t)
andL̃0(t) is related to (A2A0). Since the difference betwee
L̃(t) and L̃0(t) has an explicit prefactor ofg̃3, so doesA
2-3
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2A0. Using the symmetry argument that the Lyapunov e
ponents have to be even functions ofg, we obtain

l i1l6N2 i 1152a01O~gg̃3!, i 51, . . . ,6N. ~16!

For the largest and the most negative Lyapunov exponen
has been possible to show that they pair to2a0 plus correc-
tions of O(gg̃3) by means of a kinetic theory approac
@24,25#, based on the independence of subsequent collis
of a sphere. Likewise, one expects that in subsequent
intervals of O(t0), the L(t) matrices are not qualitatively
much different from each other. Therefore, we expect that
coefficient of theO(gg̃3) term in Eq.~16!, to be of the same
order as that for a flight timet5O(t0) @i.e., of the order of
B5O(1)#, and therefore Eq.~16! to hold.

In summary, for the SLLOD equations with a constanta0
thermostat, the finite-time Lyapunov exponents obey
CPR up toO(gg̃3) when that time is of the order of th
mean flight time, and this is expected to hold for the infini
time Lyapunov exponents too. Moreover, the isokine
Gaussian thermostat is equivalent to the constant multip
-

ng
t.

ef
o

at
o
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thermostat in the thermodynamic limit@19#, and hence one
expects that with an isokinetic Gaussian thermostat betw
collisions, the Lyapunov exponent spectrum also exhib
O(gg̃3) deviations from the CPR, in the thermodynam
limit. Finally, given that the source of the CPR violation
basically thea0gCR term in Eq. ~4!, one can argue tha
when the gas particles interact with each other by means
short-ranged, repulsive potential with a constant multipl
thermostat, the violation of the CPR would also be at leas
O(g̃4) ~for gas particles interacting with each other b
means of a short-ranged, repulsive potential with an iso
netic Gaussian thermostat, the same results are expe!
@15#.
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